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INTRODUCTION 

Any user of a computer system is aware that current 
systems are unreliable because of errors in their soft­
ware components. While system designers and imple-
menters recognize the need for reliable software, they 
have been unable to produce it. For example, operating 
systems such as OS/360 are released to the public with 
hundreds of errors still in them.1 

A project is underway at the MITRE Corporation 
which is concerned with learning how to build reliable 
software systems. Because systems of any size can al­
ways be expected to be subject to changes in require­
ments, the project goal is to produce not only reliable 
software, but readable software which is relatively easy 
to modify and maintain. This paper describes a design 
methodology developed as part of that project. 

Rationale 

Before going on to describe the methodology, a few 
words are in order about why a design methodology 
approach to software reliability has been selected, f The 
unfortunate fact is that the standard approach to build­
ing systems, involving extensive debugging, has not 
proved successful in producing reliable software, and 
there is no reason to suppose it ever will. Although im­
provements in debugging techniques may lead to the 
detection of more errors, this does not imply that all 
errors will be found. There certainly is no guarantee of 
this implicit in debugging: as Dijkstra said, "Program 
testing can be used to show the presence of bugs, but 
never to show their absence." 3 

* This work was supported by Air Force Contract No. F19(628)-
71-C-0002. 
** Present Address—Department of Electrical Engineering, Mas­
sachusetts Institute of Technology, Cambridge, Massachusetts, 
f The material in this section is covered in much greater detail in 
Liskov and Towster.2 

In order for testing to guarantee reliability, it is neces­
sary to insure that all relevant test cases have been 
checked. This requires solving two problems: 

(1) A complete (but minimal) set of relevant test 
cases must be identified. 

(2) It must be possible to test all relevant test 
cases; this implies that the set of relevant test 
cases is small and that it is possible to generate 
every case. 

The solutions to these problems do not lie in the do­
main of debugging, which has no control over the sources 
of the problems. Instead, since it is the system design 
which determines how many test cases there are and 
how easily they can be identified, the problems can be 
solved most effectively during the design process: The 
need for exhaustive testing must influence the design. 

We believe that such a design methodology can be 
developed by borrowing from the work being done on 
proof of correctness of programs. While it is too difficult 
at present to give formal proofs of the correctness of 
large programs, it is possible to structure programs so 
that they are more amenable to proof techniques. The 
objective of the methodology presented in this paper is 
to produce such a program structure, which will lend 
itself to informal proofs of correctness. The proofs, in 
addition to building confidence in the correctness of the 
program, will help to identify the relevant test cases, 
which can then be exhaustively tested. When ex­
haustive testing is combined with informal proofs, it is 
reasonable to expect reliable software after testing is 
complete. This expectation is borne out by at least one 
experiment performed in the past.4 

The scope of the paper 

A key word in the discussion of software reliability is 
"complex"; it is only when dealing with complex sys-
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terns that reliability becomes an acute problem. A two­
fold definition is offered for "complex." First, there are 
many system states in such a system, and it is difficult 
to organize the program logic to handle all states cor­
rectly. Second, the efforts of many individuals must be 
coordinated in order to build the system. A design 
methodology is concerned with providing techniques 
which enable designers to cope with the inherent logical 
complexity effectively. Coordination of the efforts of 
individuals is accomplished through management tech­
niques. 

The fact that this paper only discusses a design 
methodology should not be interpreted to imply that 
management techniques are unimportant. Both design 
methodology and management techniques are essential 
to the successful construction of reliable systems. I t is 
customary to divide the construction of a software sys­
tem into three stages: design, implementation, and test­
ing. Design involves both making decisions about what 
precisely a system will do and then planning an overall 
structure for the software which enables it to perform 
its tasks. A "good" design is an essential first step 
toward a reliable system, but there is still a long way to 
go before the system actually exists. Only management 
techniques can insure that the system implementation 
fits into the structure established by the design and that 
exhaustive testing is carried out. The management 
techniques should not only have the form of require­
ments placed on personnel; the organization of person­
nel is also important. It is generally accepted that the 
organizational structure imposes a structure on the sys­
tem being built.5 Since we wish to have a system struc­
ture based on the design methodology, the organiza­
tional structure must be set up accordingly.* 

CRITERIA FOR A GOOD DESIGN 

The design methodology is presented in two parts. 
This section defines the criteria which a system design 
should satisfy. The next section presents guidelines 
intended to help a designer develop a design satisfying 
the criteria. 

To reiterate, a complex system is one in which there 
are so many system states that it is difficult to under­
stand how to organize the program logic so that all 
states will be handled correctly. The obvious tech­
nique to apply when confronting this type of situation 
is "divide and rule." This is an old idea in program­
ming and is known as modularization. Modularization 
consists of dividing a program into subprograms 

* Management techniques intended to support the design 
methodology proposed in this paper are described by Liskov.6 

(modules) which can be compiled separately, but which 
have connections with other modules. We will use the 
definition of Parnas:7 "The connections between mod­
ules are the assumptions which the modules make about 
each other." Modules have connections in control via 
their entry and exit points; connections in data, ex­
plicitly via their arguments and values, and implicitly 
through data referenced by more than one module; 
and connections in the services which the modules pro­
vide for one another. 

Traditionally, modularity was chosen as a technique 
for system production because it makes a large system 
more manageable. I t permits efficient use of personnel, 
since programmers can implement and test different 
modules in parallel. Also, it permits a single function to 
be performed by a single module and implemented and 
tested just once, thus eliminating some duplication of 
effort and also standardizing the way such functions 
are performed. 

The basic idea of modularity seems very good, but 
unfortunately it does not always work well in practice. 
The trouble is that the division of a system into mod­
ules may introduce additional complexity. The complex­
ity comes from two sources: functional complexity and 
complexity in the connections between the modules. 
Examples of such complexity are: 

(1) A module is made to do too many (related but 
different) functions, until its logic is completely 
obscured by the tests to distinguish among the 
different functions (functional complexity). 

(2) A common function is not identified early 
enough, with the result that it is distributed 
among many different modules, thus obscuring 
the logic of each affected module (functional 
complexity). 

(3) Modules interact on common data in unexpected 
ways (complexity in connections). 

The point is that if modularity is viewed only as an 
aid to management, then any ad hoc modularization of 
the system is acceptable. However, the success of 
modularity depends directly on how well modules are 
chosen. We will accept modularization as the way of 
organizing the programming of complex software sys­
tems. A major part of this paper will be concerned with 
the question of how good modularity can be achieved, 
that is, how modules can be chosen so as to minimize 
the connections between them. First, however, it is 
necessary to give a definition of "good" modularity. To 
emphasize the requirement that modules be as disjoint 
as possible, and because the term "module" has been 
used so often and so diversely, we will discard it and 
define modularity as the division of the system into 



Design Methodology for Reliable Software Systems 193 

"partitions." The definition of good modularity will be 
based on a synthesis of two techniques, each of which 
addresses a different aspect of the problem of construct­
ing reliable software. The first, levels of abstraction, 
permits the development of a system design which copes 
with the inherent complexity of the system effectively. 
The second, structured programming, insures a clear 
and understandable representation of the design in the 
system software. 

Levels of abstraction 

Levels of abstraction were first defined by Dijkstra.8 

They provide a conceptual framework for achieving a 
clear and logical design for a system. The entire system 
is conceived as a hierarchy of levels, the lowest levels 
being those closest to the maehine. Each level supports 
an important abstraction; for example, one level might 
support segments (named virtual memories), while 
another (higher) level could support files which consist 
of several segments connected together. An example of 
a file system design based entirely on a hierarchy of 
levels can be found in Madnick and Alsop.9 

Each level of abstraction is composed of a group of 
related functions. One or more of these functions may 
be referenced (called) by functions belonging to other 
levels; these are the external functions. There may also 
be internal functions which are used only within the 
level to perform certain tasks common to all work being 
performed by the level and which cannot be referenced 
from other levels of abstraction. 

Levels of abstraction, which will constitute the parti­
tions of the system, are accompanied by rules governing 
some of the connections between them. There are two 
important rules governing levels of abstraction. The 
first concerns resources (I/O devices, data): each level 
has resources which it owns exclusively and which other 
levels are not permitted to access. The second involves 
the hierarchy: lower levels are not aware of the existence 
of higher levels and therefore may not refer to them in 
any way. Higher levels may appeal to the (external) 
functions of lower levels to perform tasks; they may also 
appeal to them to obtain information contained in the 
resources of the lower levels.* 

* In the Madnick and Alsop paper referenced earlier, the hierarchy 
of levels is strictly enforced in the sense that if the third level 
wishes to make use of the services of the first level, it must do so 
through the second level. This paper does not impose such a strict 
requirement; a high level may make use of a level several steps 
below it in the hierarchy without necessarily requiring the 
assistance of intermediate levels. The 'THE' system8 and the 
Venus system10 contain examples of levels used in this way. 

Structured programming 

Structured programming is a programming discipline 
which was introduced with reliability in mind.11,12 Al­
though of fairly recent origin, the term "structured pro­
gramming" does not have a standard definition. We 
will use the following definition in this paper. 

Structured programming is defined by two rules. The 
first rule states that structured programs are developed 
from the top down, in levels.* The highest level de­
scribes the flow of control among major functional 
components (major subsystems) of the system; compo­
nent names are introduced to represent the components. 
The names are subsequently associated with code which 
describes the flow of control among still lower-level 
components, which are again represented by their 
component names. The process stops when no undefined 
names remain. 

The second rule defines which control structures may 
be used in structured programs. Only the following 
control structures are permitted: concatenation, selec­
tion of the next statement based on the testing of a con­
dition, and iteration. Connection of two statements by 
a goto is not permitted. The statements themselves may 
make use of the component names of lower-level com­
ponents. 

Structured programming and proofs of 
correctness 

The goal of structured programming is to produce 
program structures which are amenable to proofs of 
correctness. The proof of a structured program is 
broken down into proofs of the correctness of each of 
the components. Before a component is coded, a speci­
fication exists explaining its input and output and the 
function which it is supposed to perform. (The specifi­
cation is defined at the time the component name is 
introduced; it may even be part of the name.) When the 
component is coded, it is expressed in terms of specifica­
tions of lower level components. The theorem to be 
proved is that the code of the component matches its 
specifications; this proof will be given based on axioms 
stating that lower level components match their speci­
fications. 

The proof depends on the rule about control struc­
tures in two important ways. First, limiting a compo­
nent to combinations of the three permissible control 
structures insures that control always returns from a 
component to the statement following the use of the 

* The levels in a structured program are not (usually) levels of 
abstraction, because they do not obey the rule about ownership 
of resources. 
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component name (this would not be true if goto state­
ments were permitted). This means that reasoning 
about the flow of control in the system may be limited 
to the flow of control as defined locally in the component 
being proved. Second, each permissible control struc­
ture is associated with a well-known rule of inference: 
concatenation with linear reasoning, iteration with in­
duction, and conditional selection with case analysis. 
These rules of inference are the tools used to perform 
the proof (or understand the component). 

Structured programming and system design 

Structured programming is obviously applicable to 
system implementation. We do not believe that by it­
self it constitutes a sufficient basis for system design; 
rather we believe that system design should be based on 
identification of levels of abstraction.* Levels of ab­
straction provide the framework around which and 
within which structured programming can take place. 
Structured programming is compatible with levels of 
abstraction because it provides a comfortable environ­
ment in which to deal with abstractions. Each struc­
tured program component is written in terms of the 
names of lower-level components; these names, in effect, 
constitute a vocabulary of abstractions. 

In addition, structured programs can replace flow­
charts as a way of specifying what a program is sup­
posed to do. Figure 1 shows a structured program for the 
top level of the parser in a bottom-up compiler for an 

begin 
integer relation; 
boolean must_scan; 
string symbol; 
stack parsejtack; 
must_scan := true; 
push(parsejstack, eoLentry); 
while not finished(parse_stack) do 

begin 
if mustscan then symbol := scan_next_symbol; 
relation := precedencejrelation(top(parse_stack), symbol); 
perform_operation_based_on_relation(relation, parsejstack, 

symbol, mustscan) 
end 

end 

Figure 1—A structured program for an operator 
precedence parser 

*A recent paper by Henderson and Snowden13 describes an 
experiment in which structured programming was the only-
technique used to build a program. The program had an error in 
it which was the direct result of not identifying a level of 
abstraction. 

INITIALIZE 

FINISHED? 

YES 

SCAN SYMBOL 
IF NECESSARY 

COMPUTE 
PRECEDENCE 
RELATION 

I 
PERFORM OPERATION 
BASED ON PRECEDENCE 
RELATION 

Figure 2—Flowchart of an operator precedence parser 

operator precedence grammar, and Figure 2 is a flow­
chart containing approximately the same amount of 
detail. While it is slightly more difficult to write the 
structured program, there are compensating advan­
tages. The structured program is part of the final pro­
gram; no translation is necessary (with the attendant 
possibility of introduction of errors). In addition, a 
structured program is more rigorous than a flowchart. 
For one thing, it is written in a programming language 
and therefore the semantics are well defined. For 
another, a flowchart only describes the flow of control 
among parts of a system, but a structured program at a 
minimum must also define the data controlling its flow, 
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so the description it provides is more concrete. In addi­
tion, it defines the arguments and values of a referenced 
component, and if a change in level of abstraction occurs 
at that point, then the data connection between the two 
components is completely defined by the structured 
program. This should help to avoid interface errors 
usually uncovered during system integration. 

Basic definition 

We now present a definition of good modularity sup­
porting the goal of software reliability. The system is 
divided into a hierarchy of partitions, where each parti­
tion represents one level of abstraction, and consists of 
one or more functions which share common resources. 
At the same time, the entire system is expressed by a 
structured program which defines the way control 
passes among the partitions. The connections between 
the partitions are limited as follows: 

(1) The connections in control are limited by the 
rules about the hierarchy of levels of abstraction 
and also follow the rules for structured programs. 

(2) The connections in data between partitions are 
limited to the explicit arguments passed from the 
functions of one partition to the (external) func­
tions of another partition. Implicit interaction on 
common data may only occur among functions 
within a partition. 

(3) The combined activity of the functions in a 
partition support its abstraction and nothing 
more. This makes the partitions logically inde­
pendent of one another. For example, a parti­
tion supporting the abstraction of files composed 
of many virtual memories should not contain 
any code supporting the existence of virtual 
memories. 

A system design satisfying the above requirements is 
compatible with the goal of software reliability. Since 
the system structure is expressed as a structured pro­
gram, it should be possible to prove that it satisfies the 
system specifications, assuming that the structured pro­
grams which will eventually support the functions of the 
levels of abstraction satisfy their specifications. In ad­
dition, it is reasonable to expect that exhaustive testing 
of all relevant test cases will be possible. Exhaustive 
testing of the whole system means that each partition 
must be exhaustively tested, and all combinations of 
partitions must be exhaustively tested. Exhaustive 
testing of a single partition involves both testing based 
on input parameters to the functions in the partition 
and testing based on intermediate values of state vari­

ables of the partition. When this testing is complete, it 
is no longer necessary to worry about the state variables 
because of requirement 2. Thus, the testing of combina­
tions of partitions is limited to testing the input and 
output parameters of the external functions in the 
partitions. In addition, requirement 3 says that parti­
tions are logically independent of one another; this 
means that it is not necessary when combining parti­
tions to test combinations of the relevant test cases for 
each partition. Thus, the number of relevant test cases 
for two partitions equals the sum of the relevant test 
cases for each partition, not the product. 

GUIDELINES FOR SYSTEM DESIGN 

Now that we have a definition of good modulariza­
tion, the next question is how a system modularization 
satisfying this definition can be achieved. The tradi­
tional technique for modularization is to analyze the 
execution-time flow of the system and organize the sys­
tem structure around each major sequential task. This 
technique leads to a structure which has very simple 
connections in control, but the connections in data tend 
to be complex (for examples see Parnas14 and Cohen15). 
The structure therefore violates requirement 2; it is 
likely to violate requirement 3 also since there is no 
reason (in general) to assume any correspondence be­
tween the sequential ordering of events and the inde­
pendence of the events. 

If the execution flow technique is discarded, however, 
we are left with almost nothing concrete to help us make 
decisions about how to organize the system structure. 
The guidelines presented here are intended to help 
rectify this situation. First are some guidelines about 
how to select abstractions; these guidelines tend to 
overlap, and when designing a system, the choice of a 
particular abstraction will probably be based on several 
of the guidelines. Next the question of how to proceed 
with the design is addressed. Finally, an example of the 
selection of a particular abstraction within the Venus 
system10 is presented to illustrate the application of 
several of the principles; an understanding of Venus is 
not necessary for understanding the example. 

Guidelines for selecting abstractions 

Partitions are always introduced to support an ab­
straction or concept which the designer finds helpful in 
thinking about the system. Abstraction is a very valu­
able aid to ordering complexity. Abstractions are intro­
duced in order to make what the system is doing clearer 
and more understandable; an abstraction is a conceptual 
simplification because it expresses what is being done 
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without specifying how it is done. The purpose of this 
section is to discuss the types of abstractions which 
may be expected to be useful in designing a system. 

Abstractions of resources 

Every hardware resource available on the system will 
be represented by an abstraction having useful charac­
teristics for the user or the system itself. The abstrac­
tion will be supported by a partition whose functions 
map the characteristics of the abstract resource into the 
characteristics of the real underlying resource or re­
sources. This mapping may itself make use of several 
lower partitions, each supporting an abstraction useful 
in defining the functions of the original partition. I t is 
likely that a strict hierarchy will be imposed on the 
group of partitions; that is, other parts of the system 
may only reference the functions in the original parti­
tion. In this case, we will refer to the lower partitions 
as "sub-partitions." 

Two examples of abstract resources are given. In an 
interactive system, "abstract teletypes" with end-of-
message and erasing conventions are to be expected. 
In a multiprogramming system, the abstraction of 
processes frees the rest of the system from concern about 
the true number of processors. 

Abstract characteristics of da t a 

In most systems the users are interested in the struc­
ture of data rather than (or in addition to) storage of 
data. The system can satisfy this interest by the inclu­
sion of an abstraction supporting the chosen data struc­
ture; functions of the partition for that abstraction will 
map the structure into the way data is actually repre­
sented by the machine (again this may be accomplished 
by several sub-partitions). For example, in a file man­
agement system such an abstraction might be an in­
dexed sequential access method. The system itself also 
benefits from abstract representation of data; for ex­
ample, the scanner in a compiler permits the rest of the 
compiler to deal with symbols rather than with charac­
ters. 

Simplification via limiting information 

According to the third requirement for good modu­
larization, the functions comprising a partition support 
only one abstraction and nothing more. Sometimes it is 
difficult to see that this restriction is being violated, or 
to recognize that the possibility for identification of 
another abstraction exists. 

One technique for simplification is to limit the amount 

of information which the functions in the partition need 
to know (or even have access to) . An example of such 
information is the complicated format in which data is 
stored for use by the functions in the partition (the 
data would be a resource of the partition). The func­
tions require the information embedded in the data but 
need not know how it is derived from the data. This 
knowledge can be successfully hidden within a lower 
partition (possibly a sub-partition) whose functions will 
provide requested information when called; note that 
the data in question become a resource of the lower 
partition. 

Simplification via generalization 

Another technique for simplification is to recognize 
that a slight generalization of a function (or group of 
functions) will cause the functions to become generally 
useful. Then a separate partition can be created to con­
tain the generalized function or functions. Separating 
such groups is a common technique in system imple­
mentation and is also useful for error avoidance, mini­
mization of work, and standardization. The existence 
of such a group simplifies other partitions, which need 
only appeal to the functions of the lower partition 
rather than perform the tasks themselves. An example 
of a generalization is a function which will move a 
specified number of characters from one location to 
another, where both locations are also specified; this 
function is a generalization of a function in which one 
or more of the input parameters is assumed. 

Sometimes an already existing partition contains 
functions supporting tasks very similar to some work 
which must be performed. When this is true, a new 
partition containing new versions of those functions 
may be created, provided that the new functions are 
not much more complex than the old ones. 

System maintenance and modification 

Producing a system which is easily modified and 
maintained is one of our primary goals. This goal can 
be aided by separating into independent partitions 
functions which are performing a task whose definition 
is likely to change in the future. For example, if a parti­
tion supports paging of data between core and some 
backup storage, it may be wise to isolate as an inde­
pendent partition those functions which actually know 
what the backup storage device is (and the device be­
comes a resource of the new partition). Then if a new 
device is added to the system (or a current device is 
removed), only the functions in the lower partition will 
be affected; the higher partition will have been isolated 
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from such changes by the requirement about data con­
nections between partitions. 

How to proceed with the design 

Two phases of design are distinguished. The very first 
phase of the design (phase 1) will be concerned with de­
fining precise system specifications and analyzing them 
with respect to the environment (hardware or software) 
in which the system will eventually exist. The result of 
this phase will be a number of abstractions which repre­
sent the eventual system behavior in a very general 
way. These abstractions imply the existence of parti­
tions, but very little is known about the connections 
between the partitions, the flow of control among the 
partitions (although a general idea of the hierarchy of 
partitions will exist), or how the functions of the parti­
tions will be coded. Every important external charac­
teristic of the system should be present as an abstrac­
tion at this stage. Many of the abstractions have to do 
with the management of system resources; others have 
to do with services provided to the user. 

The second phase of system design (phase 2) investi­
gates the practicality of the abstractions proposed by 
phase 1 and establishes the data connections between 
the partitions and the flow of control among the parti­
tions. This latter exercise establishes the placement of 
the various partitions in the hierarchy. The second 
phase occurs concurrently with the first; as abstractions 
are proposed, their utility and practicality are im­
mediately investigated. For example, in an information 
retrieval system the question of whether a given search 
technique is efficient enough to satisfy system con­
straints must be investigated. 

A partition has been adequately investigated when 
its connections with the rest of the system are known 
and when the designers are confident that they under­
stand exactly what its effect on the system will be. 
Varying depths of analysis will be necessary to achieve 
this confidence. I t may be necessary to analyze how the 
functions of the partition could be implemented, involv­
ing phase 1 analysis as new abstractions are postulated 
requiring lower partitions or sub-partitions. Possible re­
sults of a phase 2 investigation are that an abstraction 
may be accepted with or without changes, or it may be 
rejected. If an abstraction is rejected, then another 
abstraction must be proposed (phase 1) and investi­
gated (phase 2). The iteration between phase 1 and 
phase 2 continues until the design is complete. 

Structured programming 

It is not clear exactly how early structured program­
ming of the system should begin. Obviously, whenever 

the urge is felt to draw a flowchart, a structured pro­
gram should be written instead. Structured programs 
connecting all the partitions together will be expected 
by the end of the design phase. The best rule is probably 
to keep trying to write structured programs; failure 
will indicate that system abstractions are not yet 
sufficiently understood and perhaps this exercise will 
shed some light on wThere more effort is needed or where 
other abstractions are required. 

When is the design finished? 

The design will be considered finished when the fol­
lowing criteria are satisfied: 

(1) All major abstractions have been identified and 
partitions defined for them; the system resources 
have been distributed among the partitions and 
their positions in the hierarchy established. 

(2) The system exists as a structured program, show­
ing how the flow of control passes among the 
partitions. The structured program consists of 
several components, but no component is likely 
to be completely defined; rather each component 
is likely to use the names of lower-level com­
ponents which are not yet defined. The inter­
faces between the partitions have been defined, 
and the relevant test cases for each partition 
have been identified. 

(3) Sufficient information is available so that a 
skeleton of a user's guide to the system could be 
written. Many details of the guide would be 
filled in later, but new sections should not be 
needed.* 

An example from Venus 

The following example from the Venus system10 is 
presented because it illustrates many of the points 
made about selection, implementation, and use of ab­
stractions and partitions. The concept to be discussed 
is that of external segment name, referred to as ESN 
from now on. 

The concept of ESN was introduced as an abstrac­
tion primarily for the benefit of users of the system. 
The important point is that a segment (named virtual 
memory) exists both conceptually (as a place where a 

* This requirement helps to insure that the design fulfills the 
system specifications. In fact, if there is a customer for whom the 
system is being developed, a preliminary user's guide derived 
from the system design could be a means for reviewing and 
accepting the design. 
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programmer thinks of information as being stored) and 
in reality (the encoding of that information in the com­
puter). The reality of a segment is supported by an 
internal segment name (ISN) which is not very con­
venient for a programmer to use or remember. There­
fore, the symbolic ESN was introduced. 

As soon as the concept of ESN was imagined, the 
existence of a partition supporting this concept was im­
plied. This partition owned a nebulous data resource, a 
dictionary, which contained information about the 
mappings between ESNs and ISNs. The formatting of 
this data was hidden information as far as the rest of 
the system was concerned. In fact, decisions about the 
dictionary format and about the algorithms used to 
search a dictionary could safely be delayed until much 
later in the design process. A collective name, the dic­
tionary functions, was given to the functions in this 
partition. 

Now phase 2 analysis commenced. It was necessary 
to define the interface presented by the partition to the 
rest of the system. Obvious items of interest are ESNs 
and ISNs; the format of ISNs was already determined 
by the computer architecture, but it was necessary to 
decide about the format of ESNs. The most general 
format would be a count of the number of characters 
in the ESN followed by the ESN itself; for efficiency, 
however, a fixed format of six characters was selected. 

At this point a generalization of the concept of ESN 
occurred, because it was recognized that a two-part 
ESN would be more useful than a single symbolic ESN. 
The first part of the ESN is the symbolic name of the 
dictionary which should be used to make the mapping; 
the second part is the symbolic name to be looked up in 
the dictionary. This concept was supported by the 
existence of a dictionary containing the names of all 
dictionaries. A format had to be chosen for telling dic­
tionary functions which dictionary to use; for reasons of 
efficiency, the ISN of the dictionary was chosen (thus 
avoiding repeated conversions of dictionary ESN into 
dictionary ISN). 

When phase 2 analysis was over, we had the identifi­
cation of a partition; we knew what type of function 
belonged in this partition, what sort of interface it pre­
sented to the rest of the system, and what information 
was kept in dictionaries. As the system design pro­
ceeded, new dictionary functions were specified as 
needed. Two generalizations were realized later. The 
first was to add extra information to the dictionary; 
this was information which the system wanted on a seg­
ment basis, and the dictionaries were a handy place to 
store it. The second was to make use of dictionary func­
tions as a general mapping device; for example, dic­
tionaries are used to hold information about the map­

ping of record names into tape locations, permitting 
simplification of a higher partition. 

In reality, as soon as dictionaries and dictionary func­
tions were conceived, a core of dictionary functions was 
implemented and tested. This is a common situation in 
building systems and did not cause any difficulty in this 
case. For one thing, extra space was purposely left in 
dictionary entries because we suspected we might 
want extra information there later although we did not 
then know what it was. The search algorithm selected 
was straight serial search; the search was embedded in 
two internal dictionary functions (a sub-partition) so 
that the format of the dictionaries might be changed 
and the search algorithm redefined with very little ef­
fect on the system or most of the dictionary functions. 
This follows the guideline of modifiability. 

CONCLUSIONS 

This paper has described a design methodology for the 
development of reliable software systems. The first part 
of the methodology is a definition of a "good" system 
modularization, in which the system is organized into a 
hierarchy of "partitions", each supporting an "abstrac­
tion" and having minimal connections with one another. 
The total system design, showing how control flows 
among the partitions, is expressed as a structured pro­
gram, and thus the system structure is amenable to 
proof techniques. 

The second part of the methodology addresses the 
question of how to achieve a system design having good 
modularity. The key to design is seen as the identifica­
tion of "useful" abstractions which are introduced to 
help a designer think about the system; some methods 
of finding abstractions are suggested. Also included is a 
definition of the "end of design", at which time, in addi­
tion to having a system design with the desired struc­
ture, a preliminary user's' guide to the system could be 
written as a way of checking that the system meets its 
specifications. 

Although the methodology proposed in this paper is 
based on techniques which have contributed to the pro­
duction of reliable software in the past, it is nevertheless 
largely intuitive, and may prove difficult to apply to 
real system design. The next step to be undertaken at 
MITRE is to test the methodology by conscientiously 
applying it, in conjunction with certain management 
techniques,6 to the construction of a small, but com­
plex, multi-user file management system. We hope that 
this exercise will lead to the refinement, extension and 
clarification of the methodology. 
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