
A design methodology for reliable software systems*

by B. H. LISKOV**

The MITRE Corporation
Bedford, Massachusetts

INTRODUCTION

Any user of a computer system is aware that current
systems are unreliable because of errors in their soft­
ware components. While system designers and imple-
menters recognize the need for reliable software, they
have been unable to produce it. For example, operating
systems such as OS/360 are released to the public with
hundreds of errors still in them.1

A project is underway at the MITRE Corporation
which is concerned with learning how to build reliable
software systems. Because systems of any size can al­
ways be expected to be subject to changes in require­
ments, the project goal is to produce not only reliable
software, but readable software which is relatively easy
to modify and maintain. This paper describes a design
methodology developed as part of that project.

Rationale

Before going on to describe the methodology, a few
words are in order about why a design methodology
approach to software reliability has been selected, f The
unfortunate fact is that the standard approach to build­
ing systems, involving extensive debugging, has not
proved successful in producing reliable software, and
there is no reason to suppose it ever will. Although im­
provements in debugging techniques may lead to the
detection of more errors, this does not imply that all
errors will be found. There certainly is no guarantee of
this implicit in debugging: as Dijkstra said, "Program
testing can be used to show the presence of bugs, but
never to show their absence." 3

* This work was supported by Air Force Contract No. F19(628)-
71-C-0002.
** Present Address—Department of Electrical Engineering, Mas­
sachusetts Institute of Technology, Cambridge, Massachusetts,
f The material in this section is covered in much greater detail in
Liskov and Towster.2

In order for testing to guarantee reliability, it is neces­
sary to insure that all relevant test cases have been
checked. This requires solving two problems:

(1) A complete (but minimal) set of relevant test
cases must be identified.

(2) It must be possible to test all relevant test
cases; this implies that the set of relevant test
cases is small and that it is possible to generate
every case.

The solutions to these problems do not lie in the do­
main of debugging, which has no control over the sources
of the problems. Instead, since it is the system design
which determines how many test cases there are and
how easily they can be identified, the problems can be
solved most effectively during the design process: The
need for exhaustive testing must influence the design.

We believe that such a design methodology can be
developed by borrowing from the work being done on
proof of correctness of programs. While it is too difficult
at present to give formal proofs of the correctness of
large programs, it is possible to structure programs so
that they are more amenable to proof techniques. The
objective of the methodology presented in this paper is
to produce such a program structure, which will lend
itself to informal proofs of correctness. The proofs, in
addition to building confidence in the correctness of the
program, will help to identify the relevant test cases,
which can then be exhaustively tested. When ex­
haustive testing is combined with informal proofs, it is
reasonable to expect reliable software after testing is
complete. This expectation is borne out by at least one
experiment performed in the past.4

The scope of the paper

A key word in the discussion of software reliability is
"complex"; it is only when dealing with complex sys-

191

192 Fall Joint Computer Conference, 1972

terns that reliability becomes an acute problem. A two­
fold definition is offered for "complex." First, there are
many system states in such a system, and it is difficult
to organize the program logic to handle all states cor­
rectly. Second, the efforts of many individuals must be
coordinated in order to build the system. A design
methodology is concerned with providing techniques
which enable designers to cope with the inherent logical
complexity effectively. Coordination of the efforts of
individuals is accomplished through management tech­
niques.

The fact that this paper only discusses a design
methodology should not be interpreted to imply that
management techniques are unimportant. Both design
methodology and management techniques are essential
to the successful construction of reliable systems. I t is
customary to divide the construction of a software sys­
tem into three stages: design, implementation, and test­
ing. Design involves both making decisions about what
precisely a system will do and then planning an overall
structure for the software which enables it to perform
its tasks. A "good" design is an essential first step
toward a reliable system, but there is still a long way to
go before the system actually exists. Only management
techniques can insure that the system implementation
fits into the structure established by the design and that
exhaustive testing is carried out. The management
techniques should not only have the form of require­
ments placed on personnel; the organization of person­
nel is also important. It is generally accepted that the
organizational structure imposes a structure on the sys­
tem being built.5 Since we wish to have a system struc­
ture based on the design methodology, the organiza­
tional structure must be set up accordingly.*

CRITERIA FOR A GOOD DESIGN

The design methodology is presented in two parts.
This section defines the criteria which a system design
should satisfy. The next section presents guidelines
intended to help a designer develop a design satisfying
the criteria.

To reiterate, a complex system is one in which there
are so many system states that it is difficult to under­
stand how to organize the program logic so that all
states will be handled correctly. The obvious tech­
nique to apply when confronting this type of situation
is "divide and rule." This is an old idea in program­
ming and is known as modularization. Modularization
consists of dividing a program into subprograms

* Management techniques intended to support the design
methodology proposed in this paper are described by Liskov.6

(modules) which can be compiled separately, but which
have connections with other modules. We will use the
definition of Parnas:7 "The connections between mod­
ules are the assumptions which the modules make about
each other." Modules have connections in control via
their entry and exit points; connections in data, ex­
plicitly via their arguments and values, and implicitly
through data referenced by more than one module;
and connections in the services which the modules pro­
vide for one another.

Traditionally, modularity was chosen as a technique
for system production because it makes a large system
more manageable. I t permits efficient use of personnel,
since programmers can implement and test different
modules in parallel. Also, it permits a single function to
be performed by a single module and implemented and
tested just once, thus eliminating some duplication of
effort and also standardizing the way such functions
are performed.

The basic idea of modularity seems very good, but
unfortunately it does not always work well in practice.
The trouble is that the division of a system into mod­
ules may introduce additional complexity. The complex­
ity comes from two sources: functional complexity and
complexity in the connections between the modules.
Examples of such complexity are:

(1) A module is made to do too many (related but
different) functions, until its logic is completely
obscured by the tests to distinguish among the
different functions (functional complexity).

(2) A common function is not identified early
enough, with the result that it is distributed
among many different modules, thus obscuring
the logic of each affected module (functional
complexity).

(3) Modules interact on common data in unexpected
ways (complexity in connections).

The point is that if modularity is viewed only as an
aid to management, then any ad hoc modularization of
the system is acceptable. However, the success of
modularity depends directly on how well modules are
chosen. We will accept modularization as the way of
organizing the programming of complex software sys­
tems. A major part of this paper will be concerned with
the question of how good modularity can be achieved,
that is, how modules can be chosen so as to minimize
the connections between them. First, however, it is
necessary to give a definition of "good" modularity. To
emphasize the requirement that modules be as disjoint
as possible, and because the term "module" has been
used so often and so diversely, we will discard it and
define modularity as the division of the system into

Design Methodology for Reliable Software Systems 193

"partitions." The definition of good modularity will be
based on a synthesis of two techniques, each of which
addresses a different aspect of the problem of construct­
ing reliable software. The first, levels of abstraction,
permits the development of a system design which copes
with the inherent complexity of the system effectively.
The second, structured programming, insures a clear
and understandable representation of the design in the
system software.

Levels of abstraction

Levels of abstraction were first defined by Dijkstra.8

They provide a conceptual framework for achieving a
clear and logical design for a system. The entire system
is conceived as a hierarchy of levels, the lowest levels
being those closest to the maehine. Each level supports
an important abstraction; for example, one level might
support segments (named virtual memories), while
another (higher) level could support files which consist
of several segments connected together. An example of
a file system design based entirely on a hierarchy of
levels can be found in Madnick and Alsop.9

Each level of abstraction is composed of a group of
related functions. One or more of these functions may
be referenced (called) by functions belonging to other
levels; these are the external functions. There may also
be internal functions which are used only within the
level to perform certain tasks common to all work being
performed by the level and which cannot be referenced
from other levels of abstraction.

Levels of abstraction, which will constitute the parti­
tions of the system, are accompanied by rules governing
some of the connections between them. There are two
important rules governing levels of abstraction. The
first concerns resources (I/O devices, data): each level
has resources which it owns exclusively and which other
levels are not permitted to access. The second involves
the hierarchy: lower levels are not aware of the existence
of higher levels and therefore may not refer to them in
any way. Higher levels may appeal to the (external)
functions of lower levels to perform tasks; they may also
appeal to them to obtain information contained in the
resources of the lower levels.*

* In the Madnick and Alsop paper referenced earlier, the hierarchy
of levels is strictly enforced in the sense that if the third level
wishes to make use of the services of the first level, it must do so
through the second level. This paper does not impose such a strict
requirement; a high level may make use of a level several steps
below it in the hierarchy without necessarily requiring the
assistance of intermediate levels. The 'THE' system8 and the
Venus system10 contain examples of levels used in this way.

Structured programming

Structured programming is a programming discipline
which was introduced with reliability in mind.11,12 Al­
though of fairly recent origin, the term "structured pro­
gramming" does not have a standard definition. We
will use the following definition in this paper.

Structured programming is defined by two rules. The
first rule states that structured programs are developed
from the top down, in levels.* The highest level de­
scribes the flow of control among major functional
components (major subsystems) of the system; compo­
nent names are introduced to represent the components.
The names are subsequently associated with code which
describes the flow of control among still lower-level
components, which are again represented by their
component names. The process stops when no undefined
names remain.

The second rule defines which control structures may
be used in structured programs. Only the following
control structures are permitted: concatenation, selec­
tion of the next statement based on the testing of a con­
dition, and iteration. Connection of two statements by
a goto is not permitted. The statements themselves may
make use of the component names of lower-level com­
ponents.

Structured programming and proofs of
correctness

The goal of structured programming is to produce
program structures which are amenable to proofs of
correctness. The proof of a structured program is
broken down into proofs of the correctness of each of
the components. Before a component is coded, a speci­
fication exists explaining its input and output and the
function which it is supposed to perform. (The specifi­
cation is defined at the time the component name is
introduced; it may even be part of the name.) When the
component is coded, it is expressed in terms of specifica­
tions of lower level components. The theorem to be
proved is that the code of the component matches its
specifications; this proof will be given based on axioms
stating that lower level components match their speci­
fications.

The proof depends on the rule about control struc­
tures in two important ways. First, limiting a compo­
nent to combinations of the three permissible control
structures insures that control always returns from a
component to the statement following the use of the

* The levels in a structured program are not (usually) levels of
abstraction, because they do not obey the rule about ownership
of resources.

194 Fall Joint Computer Conference, 1972

component name (this would not be true if goto state­
ments were permitted). This means that reasoning
about the flow of control in the system may be limited
to the flow of control as defined locally in the component
being proved. Second, each permissible control struc­
ture is associated with a well-known rule of inference:
concatenation with linear reasoning, iteration with in­
duction, and conditional selection with case analysis.
These rules of inference are the tools used to perform
the proof (or understand the component).

Structured programming and system design

Structured programming is obviously applicable to
system implementation. We do not believe that by it­
self it constitutes a sufficient basis for system design;
rather we believe that system design should be based on
identification of levels of abstraction.* Levels of ab­
straction provide the framework around which and
within which structured programming can take place.
Structured programming is compatible with levels of
abstraction because it provides a comfortable environ­
ment in which to deal with abstractions. Each struc­
tured program component is written in terms of the
names of lower-level components; these names, in effect,
constitute a vocabulary of abstractions.

In addition, structured programs can replace flow­
charts as a way of specifying what a program is sup­
posed to do. Figure 1 shows a structured program for the
top level of the parser in a bottom-up compiler for an

begin
integer relation;
boolean must_scan;
string symbol;
stack parsejtack;
must_scan := true;
push(parsejstack, eoLentry);
while not finished(parse_stack) do

begin
if mustscan then symbol := scan_next_symbol;
relation := precedencejrelation(top(parse_stack), symbol);
perform_operation_based_on_relation(relation, parsejstack,

symbol, mustscan)
end

end

Figure 1—A structured program for an operator
precedence parser

*A recent paper by Henderson and Snowden13 describes an
experiment in which structured programming was the only-
technique used to build a program. The program had an error in
it which was the direct result of not identifying a level of
abstraction.

INITIALIZE

FINISHED?

YES

SCAN SYMBOL
IF NECESSARY

COMPUTE
PRECEDENCE
RELATION

I
PERFORM OPERATION
BASED ON PRECEDENCE
RELATION

Figure 2—Flowchart of an operator precedence parser

operator precedence grammar, and Figure 2 is a flow­
chart containing approximately the same amount of
detail. While it is slightly more difficult to write the
structured program, there are compensating advan­
tages. The structured program is part of the final pro­
gram; no translation is necessary (with the attendant
possibility of introduction of errors). In addition, a
structured program is more rigorous than a flowchart.
For one thing, it is written in a programming language
and therefore the semantics are well defined. For
another, a flowchart only describes the flow of control
among parts of a system, but a structured program at a
minimum must also define the data controlling its flow,

Design Methodology for Reliable Software Systems 195

so the description it provides is more concrete. In addi­
tion, it defines the arguments and values of a referenced
component, and if a change in level of abstraction occurs
at that point, then the data connection between the two
components is completely defined by the structured
program. This should help to avoid interface errors
usually uncovered during system integration.

Basic definition

We now present a definition of good modularity sup­
porting the goal of software reliability. The system is
divided into a hierarchy of partitions, where each parti­
tion represents one level of abstraction, and consists of
one or more functions which share common resources.
At the same time, the entire system is expressed by a
structured program which defines the way control
passes among the partitions. The connections between
the partitions are limited as follows:

(1) The connections in control are limited by the
rules about the hierarchy of levels of abstraction
and also follow the rules for structured programs.

(2) The connections in data between partitions are
limited to the explicit arguments passed from the
functions of one partition to the (external) func­
tions of another partition. Implicit interaction on
common data may only occur among functions
within a partition.

(3) The combined activity of the functions in a
partition support its abstraction and nothing
more. This makes the partitions logically inde­
pendent of one another. For example, a parti­
tion supporting the abstraction of files composed
of many virtual memories should not contain
any code supporting the existence of virtual
memories.

A system design satisfying the above requirements is
compatible with the goal of software reliability. Since
the system structure is expressed as a structured pro­
gram, it should be possible to prove that it satisfies the
system specifications, assuming that the structured pro­
grams which will eventually support the functions of the
levels of abstraction satisfy their specifications. In ad­
dition, it is reasonable to expect that exhaustive testing
of all relevant test cases will be possible. Exhaustive
testing of the whole system means that each partition
must be exhaustively tested, and all combinations of
partitions must be exhaustively tested. Exhaustive
testing of a single partition involves both testing based
on input parameters to the functions in the partition
and testing based on intermediate values of state vari­

ables of the partition. When this testing is complete, it
is no longer necessary to worry about the state variables
because of requirement 2. Thus, the testing of combina­
tions of partitions is limited to testing the input and
output parameters of the external functions in the
partitions. In addition, requirement 3 says that parti­
tions are logically independent of one another; this
means that it is not necessary when combining parti­
tions to test combinations of the relevant test cases for
each partition. Thus, the number of relevant test cases
for two partitions equals the sum of the relevant test
cases for each partition, not the product.

GUIDELINES FOR SYSTEM DESIGN

Now that we have a definition of good modulariza­
tion, the next question is how a system modularization
satisfying this definition can be achieved. The tradi­
tional technique for modularization is to analyze the
execution-time flow of the system and organize the sys­
tem structure around each major sequential task. This
technique leads to a structure which has very simple
connections in control, but the connections in data tend
to be complex (for examples see Parnas14 and Cohen15).
The structure therefore violates requirement 2; it is
likely to violate requirement 3 also since there is no
reason (in general) to assume any correspondence be­
tween the sequential ordering of events and the inde­
pendence of the events.

If the execution flow technique is discarded, however,
we are left with almost nothing concrete to help us make
decisions about how to organize the system structure.
The guidelines presented here are intended to help
rectify this situation. First are some guidelines about
how to select abstractions; these guidelines tend to
overlap, and when designing a system, the choice of a
particular abstraction will probably be based on several
of the guidelines. Next the question of how to proceed
with the design is addressed. Finally, an example of the
selection of a particular abstraction within the Venus
system10 is presented to illustrate the application of
several of the principles; an understanding of Venus is
not necessary for understanding the example.

Guidelines for selecting abstractions

Partitions are always introduced to support an ab­
straction or concept which the designer finds helpful in
thinking about the system. Abstraction is a very valu­
able aid to ordering complexity. Abstractions are intro­
duced in order to make what the system is doing clearer
and more understandable; an abstraction is a conceptual
simplification because it expresses what is being done

196 Fall Joint Computer Conference, 1972

without specifying how it is done. The purpose of this
section is to discuss the types of abstractions which
may be expected to be useful in designing a system.

Abstractions of resources

Every hardware resource available on the system will
be represented by an abstraction having useful charac­
teristics for the user or the system itself. The abstrac­
tion will be supported by a partition whose functions
map the characteristics of the abstract resource into the
characteristics of the real underlying resource or re­
sources. This mapping may itself make use of several
lower partitions, each supporting an abstraction useful
in defining the functions of the original partition. I t is
likely that a strict hierarchy will be imposed on the
group of partitions; that is, other parts of the system
may only reference the functions in the original parti­
tion. In this case, we will refer to the lower partitions
as "sub-partitions."

Two examples of abstract resources are given. In an
interactive system, "abstract teletypes" with end-of-
message and erasing conventions are to be expected.
In a multiprogramming system, the abstraction of
processes frees the rest of the system from concern about
the true number of processors.

Abstract characteristics of da t a

In most systems the users are interested in the struc­
ture of data rather than (or in addition to) storage of
data. The system can satisfy this interest by the inclu­
sion of an abstraction supporting the chosen data struc­
ture; functions of the partition for that abstraction will
map the structure into the way data is actually repre­
sented by the machine (again this may be accomplished
by several sub-partitions). For example, in a file man­
agement system such an abstraction might be an in­
dexed sequential access method. The system itself also
benefits from abstract representation of data; for ex­
ample, the scanner in a compiler permits the rest of the
compiler to deal with symbols rather than with charac­
ters.

Simplification via limiting information

According to the third requirement for good modu­
larization, the functions comprising a partition support
only one abstraction and nothing more. Sometimes it is
difficult to see that this restriction is being violated, or
to recognize that the possibility for identification of
another abstraction exists.

One technique for simplification is to limit the amount

of information which the functions in the partition need
to know (or even have access to) . An example of such
information is the complicated format in which data is
stored for use by the functions in the partition (the
data would be a resource of the partition). The func­
tions require the information embedded in the data but
need not know how it is derived from the data. This
knowledge can be successfully hidden within a lower
partition (possibly a sub-partition) whose functions will
provide requested information when called; note that
the data in question become a resource of the lower
partition.

Simplification via generalization

Another technique for simplification is to recognize
that a slight generalization of a function (or group of
functions) will cause the functions to become generally
useful. Then a separate partition can be created to con­
tain the generalized function or functions. Separating
such groups is a common technique in system imple­
mentation and is also useful for error avoidance, mini­
mization of work, and standardization. The existence
of such a group simplifies other partitions, which need
only appeal to the functions of the lower partition
rather than perform the tasks themselves. An example
of a generalization is a function which will move a
specified number of characters from one location to
another, where both locations are also specified; this
function is a generalization of a function in which one
or more of the input parameters is assumed.

Sometimes an already existing partition contains
functions supporting tasks very similar to some work
which must be performed. When this is true, a new
partition containing new versions of those functions
may be created, provided that the new functions are
not much more complex than the old ones.

System maintenance and modification

Producing a system which is easily modified and
maintained is one of our primary goals. This goal can
be aided by separating into independent partitions
functions which are performing a task whose definition
is likely to change in the future. For example, if a parti­
tion supports paging of data between core and some
backup storage, it may be wise to isolate as an inde­
pendent partition those functions which actually know
what the backup storage device is (and the device be­
comes a resource of the new partition). Then if a new
device is added to the system (or a current device is
removed), only the functions in the lower partition will
be affected; the higher partition will have been isolated

Design Methodology for Reliable Software Systems 197

from such changes by the requirement about data con­
nections between partitions.

How to proceed with the design

Two phases of design are distinguished. The very first
phase of the design (phase 1) will be concerned with de­
fining precise system specifications and analyzing them
with respect to the environment (hardware or software)
in which the system will eventually exist. The result of
this phase will be a number of abstractions which repre­
sent the eventual system behavior in a very general
way. These abstractions imply the existence of parti­
tions, but very little is known about the connections
between the partitions, the flow of control among the
partitions (although a general idea of the hierarchy of
partitions will exist), or how the functions of the parti­
tions will be coded. Every important external charac­
teristic of the system should be present as an abstrac­
tion at this stage. Many of the abstractions have to do
with the management of system resources; others have
to do with services provided to the user.

The second phase of system design (phase 2) investi­
gates the practicality of the abstractions proposed by
phase 1 and establishes the data connections between
the partitions and the flow of control among the parti­
tions. This latter exercise establishes the placement of
the various partitions in the hierarchy. The second
phase occurs concurrently with the first; as abstractions
are proposed, their utility and practicality are im­
mediately investigated. For example, in an information
retrieval system the question of whether a given search
technique is efficient enough to satisfy system con­
straints must be investigated.

A partition has been adequately investigated when
its connections with the rest of the system are known
and when the designers are confident that they under­
stand exactly what its effect on the system will be.
Varying depths of analysis will be necessary to achieve
this confidence. I t may be necessary to analyze how the
functions of the partition could be implemented, involv­
ing phase 1 analysis as new abstractions are postulated
requiring lower partitions or sub-partitions. Possible re­
sults of a phase 2 investigation are that an abstraction
may be accepted with or without changes, or it may be
rejected. If an abstraction is rejected, then another
abstraction must be proposed (phase 1) and investi­
gated (phase 2). The iteration between phase 1 and
phase 2 continues until the design is complete.

Structured programming

It is not clear exactly how early structured program­
ming of the system should begin. Obviously, whenever

the urge is felt to draw a flowchart, a structured pro­
gram should be written instead. Structured programs
connecting all the partitions together will be expected
by the end of the design phase. The best rule is probably
to keep trying to write structured programs; failure
will indicate that system abstractions are not yet
sufficiently understood and perhaps this exercise will
shed some light on wThere more effort is needed or where
other abstractions are required.

When is the design finished?

The design will be considered finished when the fol­
lowing criteria are satisfied:

(1) All major abstractions have been identified and
partitions defined for them; the system resources
have been distributed among the partitions and
their positions in the hierarchy established.

(2) The system exists as a structured program, show­
ing how the flow of control passes among the
partitions. The structured program consists of
several components, but no component is likely
to be completely defined; rather each component
is likely to use the names of lower-level com­
ponents which are not yet defined. The inter­
faces between the partitions have been defined,
and the relevant test cases for each partition
have been identified.

(3) Sufficient information is available so that a
skeleton of a user's guide to the system could be
written. Many details of the guide would be
filled in later, but new sections should not be
needed.*

An example from Venus

The following example from the Venus system10 is
presented because it illustrates many of the points
made about selection, implementation, and use of ab­
stractions and partitions. The concept to be discussed
is that of external segment name, referred to as ESN
from now on.

The concept of ESN was introduced as an abstrac­
tion primarily for the benefit of users of the system.
The important point is that a segment (named virtual
memory) exists both conceptually (as a place where a

* This requirement helps to insure that the design fulfills the
system specifications. In fact, if there is a customer for whom the
system is being developed, a preliminary user's guide derived
from the system design could be a means for reviewing and
accepting the design.

198 Fall Joint Computer Conference, 1972

programmer thinks of information as being stored) and
in reality (the encoding of that information in the com­
puter). The reality of a segment is supported by an
internal segment name (ISN) which is not very con­
venient for a programmer to use or remember. There­
fore, the symbolic ESN was introduced.

As soon as the concept of ESN was imagined, the
existence of a partition supporting this concept was im­
plied. This partition owned a nebulous data resource, a
dictionary, which contained information about the
mappings between ESNs and ISNs. The formatting of
this data was hidden information as far as the rest of
the system was concerned. In fact, decisions about the
dictionary format and about the algorithms used to
search a dictionary could safely be delayed until much
later in the design process. A collective name, the dic­
tionary functions, was given to the functions in this
partition.

Now phase 2 analysis commenced. It was necessary
to define the interface presented by the partition to the
rest of the system. Obvious items of interest are ESNs
and ISNs; the format of ISNs was already determined
by the computer architecture, but it was necessary to
decide about the format of ESNs. The most general
format would be a count of the number of characters
in the ESN followed by the ESN itself; for efficiency,
however, a fixed format of six characters was selected.

At this point a generalization of the concept of ESN
occurred, because it was recognized that a two-part
ESN would be more useful than a single symbolic ESN.
The first part of the ESN is the symbolic name of the
dictionary which should be used to make the mapping;
the second part is the symbolic name to be looked up in
the dictionary. This concept was supported by the
existence of a dictionary containing the names of all
dictionaries. A format had to be chosen for telling dic­
tionary functions which dictionary to use; for reasons of
efficiency, the ISN of the dictionary was chosen (thus
avoiding repeated conversions of dictionary ESN into
dictionary ISN).

When phase 2 analysis was over, we had the identifi­
cation of a partition; we knew what type of function
belonged in this partition, what sort of interface it pre­
sented to the rest of the system, and what information
was kept in dictionaries. As the system design pro­
ceeded, new dictionary functions were specified as
needed. Two generalizations were realized later. The
first was to add extra information to the dictionary;
this was information which the system wanted on a seg­
ment basis, and the dictionaries were a handy place to
store it. The second was to make use of dictionary func­
tions as a general mapping device; for example, dic­
tionaries are used to hold information about the map­

ping of record names into tape locations, permitting
simplification of a higher partition.

In reality, as soon as dictionaries and dictionary func­
tions were conceived, a core of dictionary functions was
implemented and tested. This is a common situation in
building systems and did not cause any difficulty in this
case. For one thing, extra space was purposely left in
dictionary entries because we suspected we might
want extra information there later although we did not
then know what it was. The search algorithm selected
was straight serial search; the search was embedded in
two internal dictionary functions (a sub-partition) so
that the format of the dictionaries might be changed
and the search algorithm redefined with very little ef­
fect on the system or most of the dictionary functions.
This follows the guideline of modifiability.

CONCLUSIONS

This paper has described a design methodology for the
development of reliable software systems. The first part
of the methodology is a definition of a "good" system
modularization, in which the system is organized into a
hierarchy of "partitions", each supporting an "abstrac­
tion" and having minimal connections with one another.
The total system design, showing how control flows
among the partitions, is expressed as a structured pro­
gram, and thus the system structure is amenable to
proof techniques.

The second part of the methodology addresses the
question of how to achieve a system design having good
modularity. The key to design is seen as the identifica­
tion of "useful" abstractions which are introduced to
help a designer think about the system; some methods
of finding abstractions are suggested. Also included is a
definition of the "end of design", at which time, in addi­
tion to having a system design with the desired struc­
ture, a preliminary user's' guide to the system could be
written as a way of checking that the system meets its
specifications.

Although the methodology proposed in this paper is
based on techniques which have contributed to the pro­
duction of reliable software in the past, it is nevertheless
largely intuitive, and may prove difficult to apply to
real system design. The next step to be undertaken at
MITRE is to test the methodology by conscientiously
applying it, in conjunction with certain management
techniques,6 to the construction of a small, but com­
plex, multi-user file management system. We hope that
this exercise will lead to the refinement, extension and
clarification of the methodology.

Design Methodology for Reliable Software Systems 199

ACKNOWLEDGMENTS

The author wishes to thank J. A. Clapp and D. L.
Parnas for many helpful criticisms.

REFERENCES

1 J N BUXTON B RANDELL (eds)
Software engineering techniques
Report on a Conference Sponsored by the NATO Science
Committee Rome Italy p 20 1969

2 B H LISKOV E TOWSTER
The proof of correctness approach to reliable systems
The MITRE Corporation MTR 2073 Bedford
Massachusetts 1971

3 E W DIJKSTRA
Structured programming
Software Engineering Techniques
Report on a Conference sponsored by the NATO Science
Committee Rome Italy J N Buxton and B Randell (eds)
pp 84-88 1969

4 F T BAKER
Chief programmer team management of production
programming
IBM Syst J 11 1 pp 56-73 1972

5 M CONWAY
How do committees invent?
Datamation 14 4 pp 28-31 1968

6 B H LISKOV
Guidelines for the design and implementation of reliable
software systems

The MITRE Corporation MTR 2345 Bedford
Massachusetts 1972

7 D L PARNAS
Information distribution aspects of design methodology
Technical Report Department of Computer Science
Carnegie-Mellon University 1971

8 E W DIJKSTRA
The structure of the "THE"—multiprogramming system
Comm ACM 11 5 pp 341-346 1968

9 S MADNICK J W ALSOP II
A modular approach to file system design
AFIPS Conference Proceedings 34 AFIPS Press
Montvale New Jersey pp 1-13 1969

10 B H LISKOV
The design of the Venus operating system
Comm ACM 15 3 pp 144-149 1972

H E W DIJKSTRA
Notes on structured programming
Technische Hogeschool Eindhoven The Netherlands 1969

12 H D MILLS
Structured programming in large systems
Debugging Techniques in Large Systems R Rustin (ed)
Prentice Hall Inc Englewood Cliffs New Jersey pp 41-55

13 P HENDERSON R SNOWDEN
An experiment in structured programming
BIT 12 pp 38-53 1972

14 D L PARNAS
On the criteria to be used in decomposing systems into modules
Technical Report CMU-CS-71-101 Carnegie-Mellon
University 1971

15 A COHEN
Modular programs: Defining the module
Datamation 18 1 pp 34-37 1972

